First Semester B.E. Degree Examination, July/August 2021 Calculus and Linear Algebra

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. With usual notations prove that
$$\tan \phi = r \frac{d\theta}{dr}$$
. (06 Marks)

b. Find the radius of curvature at the point
$$\left(\frac{3a}{2}, \frac{3a}{2}\right)$$
 for the curve $x^3 + y^3 = 3axy$. (06 Marks)

c. Show that the evolute of the parabola
$$y^2 = 4ax$$
 is $27ay^2 = 4(x - 2a)^3$. (08 Marks)

2 a. Find the pedal equation of
$$r = a(1 + \cos\theta)$$
. (06 Marks)

b. Show that for the curve
$$r^2 = a^2 \cos 2\theta$$
 the radius of curvature $\rho = \frac{a^2}{3r}$. (06 Marks)

c. Find the angle between the curves
$$r = a \log \theta$$
 and $r = \frac{a}{\log \theta}$. (08 Marks)

3 a. Using Maclaurin's series prove that
$$\sqrt{1+\sin 2x} = 1 + x - \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24} + \dots$$
 (06 Marks)

b. Evaluate i)
$$\lim_{x \to 0} \left(\frac{a^x + b^x + c^x + d^x}{4} \right)^{1/x}$$
 ii) $\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}}$ (07 Marks)

c. Show that the function
$$xy(a - x - y)$$
 is maximum at $\left(\frac{a}{3}, \frac{a}{3}\right)$. Hence find maximum value if $a > 0$. (07 Marks)

4 a. If
$$U = f(x - y, y - z, z - x)$$
 show that $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z} = 0$. (06 Marks)

c. Find
$$\frac{\partial(u, v, w)}{\partial(x, y, z)}$$
 where $U = x^2 + y^2 + z^2$, $V = xy + yz + zx$ and $W = x + y + z$. (07 Marks)

5 a. Evaluate
$$\int_{-c-b-a}^{c-b} \int_{-a}^{a} (x^2 + y^2 + z^2) dxdydz$$
 (06 Marks)

b. Find the area enclosed by the parabolas
$$y^2 = 4ax$$
 and $x^2 = 4ay$. (07 Marks)

c. Prove that
$$\int_{0}^{\pi/2} \sqrt{\sin \theta} \, d\theta \cdot \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} = \pi$$
 (07 Marks)

18MAT11

- Change the order of integration and evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} dy dx$. (06 Marks)
 - Find the volume of the solid bounded by the planes x = 0, y = 0, z = 0 x + y + z = 1. (07 Marks)
 - Derive the relation between Beta and Gamma function as B(m,n) = (07 Marks)
- A body in air at 25°C cools from 100°C to 75°C in 1 minute. Find the temperature of the body at the end of 3 minutes. (06 Marks)
 - b. Find the orthogonal trajectory of $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, λ is parameter. c. Solve $(x^2 + y^2 + x)dx + xydy = 0$. (07 Marks)
 - (07 Marks)
- Solve the L-R circuit $L\frac{dI}{dt} + RI = E$ Initially I = 0 when t = 0. (06 Marks)
 - Solve $\frac{dy}{dx} + y \tan x = y^3 \sec x$. Solve $yp^2 + (x y) p x = 0$. (07 Marks
 - (07 Marks)
- Find the rank of the matrix

$$\begin{pmatrix}
3 & -4 & -1 & 2 \\
1 & 7 & 3 & 1 \\
5 & -2 & 5 & 4 \\
9 & -3 & 7 & 7
\end{pmatrix}$$

by applying elementary row operations.

(06 Marks)

- Find the largest eigen value and the corresponding eigen vector for
 - with initial vector (1 1 1)^T [carryout 5 iterations].
- c. Investigate the values of λ and μ such that the system of equations x + y + z = 6x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ may have i) Unique solution ii) Infinite solution iii) No solution.
- Solve the following system of equation x + y + z = 9, x 2y + 3z = 8, 2x + y z = 3 by 10 Gauss elimination method. (06 Marks)
 - into diagonal form. (07 Marks)
 - Solve the following system of equations by Gauss-Seidal method. 20x + y 2z = 17, 3x + 20y-z = -18, 2x - 3y + 20z = 25 [carryout three iterations]. (07 Marks)